Iterated Integrals in Quantum Field Theory

نویسنده

  • K. T. Chen
چکیده

These notes are based on a series of lectures given to a mixed audience of mathematics and physics students at Villa de Leyva in Colombia. The first half is an introduction to iterated integrals and polylogarithms, with emphasis on the case P\{0, 1,∞}. The second half gives an overview of some recent results connecting them with Feynman diagrams in perturbative quantum field theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel computation of Feynman loop integrals

The need for large numbers of compute-intensive integrals, arising in quantum field theory perturbation calculations, justifies the parallelization of loop integrals. In earlier work, we devised effective multivariate methods by iterated (repeated) adaptive numerical integration and extrapolation, applicable for some problem classes where standard multivariate integration techniques fail throug...

متن کامل

Lessons from Quantum Field Theory Hopf Algebras and Spacetime Geometries

We discuss the prominence of Hopf algebras in recent progress in Quantum Field Theory. In particular, we will consider the Hopf algebra of renormalization, whose antipode turned out to be the key to a conceptual understanding of the subtraction procedure. We shall then describe several occurences of this, or closely related Hopf algebras, in other mathematical domains, such as foliations, Runge...

متن کامل

Dynkin operators and renormalization group actions in pQFT

Renormalization techniques in perturbative quantum field theory were known, from their inception, to have a strong combinatorial content emphasized, among others, by Zimmermann’s celebrated forest formula. The present article reports on recent advances on the subject, featuring the role played by the Dynkin operators (actually their extension to the Hopf algebraic setting) at two crucial levels...

متن کامل

Greedy decomposition integrals

In this contribution we define a new class of non-linear integrals based on decomposition integrals. These integrals are motivated by greediness of many real-life situations. Another view on this new class of integrals is that it is a generalization of both the Shilkret and PAN integrals. Moreover, it can be seen as an iterated Shilkret integral. Also, an example in time-series analysis is prov...

متن کامل

On the Number of Zeros of Melnikov Functions

We provide an effective uniform upper bond for the number of zeros of the first non-vanishing Melnikov function of a polynomial perturbations of a planar polynomial Hamiltonian vector field. The bound depends on degrees of the field and of the perturbation, and on the order k of the Melnikov function. The generic case k = 1 was considered by Binyamini, Novikov and Yakovenko ( [BNY10]). The boun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010